Optimal partitions for Robin Laplacian eigenvalues

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Partitions for Eigenvalues

We introduce a new numerical method to approximate partitions of a domain minimizing the sum of Dirichlet-Laplacian eigenvalues of any order. First we prove the equivalence of the original problem and a relaxed formulation based on measures. Using this result, we build a numerical algorithm to approximate optimal configurations. We describe numerical experiments aimed at studying the asymptotic...

متن کامل

Laplacian eigenvectors and eigenvalues and almost equitable partitions

Relations between Laplacian eigenvectors and eigenvalues and the existence of almost equitable partitions (which are generalizations of equitable partitions) are presented. Furthermore, on the basis of some properties of the adjacency eigenvectors of a graph, a necessary and sufficient condition for the graph to be primitive strongly regular is introduced. c © 2006 Elsevier Ltd. All rights rese...

متن کامل

Bounds for Laplacian Graph Eigenvalues

Let G be a connected simple graph whose Laplacian eigenvalues are 0 = μn (G) μn−1 (G) · · · μ1 (G) . In this paper, we establish some upper and lower bounds for the algebraic connectivity and the largest Laplacian eigenvalue of G . Mathematics subject classification (2010): 05C50, 15A18.

متن کامل

Principal eigenvalues for generalised indefinite Robin problems

We consider the principal eigenvalue of generalised Robin boundary value problems on non-smooth domains, where the zero order coefficient of the boundary operator is negative or changes sign. We provide conditions so that the related eigenvalue problem has a principal eigenvalue. We work with the framework involving measure data on the boundary due to [Arendt & Warma, Potential Anal. 19, 2003, ...

متن کامل

Nordhaus-Gaddum Type Inequalities for Laplacian and Signless Laplacian Eigenvalues

Let G be a graph with n vertices. We denote the largest signless Laplacian eigenvalue of G by q1(G) and Laplacian eigenvalues of G by μ1(G) > · · · > μn−1(G) > μn(G) = 0. It is a conjecture on Laplacian spread of graphs that μ1(G)−μn−1(G) 6 n − 1 or equivalently μ1(G) + μ1(G) 6 2n − 1. We prove the conjecture for bipartite graphs. Also we show that for any bipartite graph G, μ1(G)μ1(G) 6 n(n − ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2018

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-018-1393-z